Solution for w smoke from exhaust pipe

Dodane: 04-09-2016 16:52
Solution for w smoke from exhaust pipe oil for Mclaren

Who is interested in old cars?

More and more people are interested in really ancient models of cars. There is no shortage connoisseurs of such cars among the real car fans, but also a person not associated in any way with passion about cars or other vehicles also willing to peek at these cars. The car after renovation will attract the eyes of everyone in the vicinity. There is no doubt that this is a very good way to stand out in the environment around us. Although often these cars are very expensive and driving them is quite uneconomical, you can also treat it as an investment. It is true that we have obtained through this investment a quick profit, but in the long term we really expect lots of money - if not for us, if only for our children and grandchildren.


Some SI engines are crankcase scavenged

Crankcase scavenged
Diagram of a crankcase scavenged 2-stroke engine in operation

Some SI engines are crankcase scavenged and do not use poppet valves. Instead the crankcase and the part of the cylinder below the piston is used as a pump. The intake port is connected to the crankcase through a reed valve or a rotary disk valve driven by the engine. For each cylinder a transfer port connects in one end to the crankcase and in the other end to the cylinder wall. The exhaust port is connected directly to the cylinder wall. The transfer and exhaust port are opened and closed by the piston. The reed valve opens when the crankcase pressure is slightly below intake pressure, to let it be filled with a new charge; this happens when the piston is moving upwards. When the piston is moving downwards the pressure in the crankcase increases and the reed valve closes promptly, then the charge in the crankcase is compressed. When the piston is moving upwards, it uncovers the exhaust port and the transfer port and the higher pressure of the charge in the crankcase makes it enter the cylinder through the transfer port, blowing the exhaust gases. Lubrication is accomplished by adding 2-stroke oil to the fuel in small ratios. Petroil refers to the mix of gasoline with the aforesaid oil. This kind of 2-stroke engines has a lower efficiency than comparable 4-strokes engines and release a more polluting exhaust gases for the following conditions:

They use a total-loss lubrication system: all the lubricating oil is eventually burned along with the fuel.
There are conflicting requirements for scavenging: On one side, enough fresh charge needs to be introduced in each cycle to displace almost all the combustion gases but introducing too much of it means that a part of it gets in the exhaust.
They must use the transfer port(s) as a carefully designed and placed nozzle so that a gas current is created in a way that it sweeps the whole cylinder before reaching the exhaust port so as to expel the combustion gases, but minimize the amount of charge exhausted. 4-stroke engines have the benefit of forcibly expelling almost all of the combustion gases because during exhaust the combustion chamber is reduced to its minimum volume. In crankcase scavenged 2-stroke engines, exhaust and intake are performed mostly simultaneously and with the combustion chamber at its maximum volume.

The main advantage of 2-stroke engines of this type is mechanical simplicity and a higher power-to-weight ratio than their 4-stroke counterparts. Despite having twice as many power strokes per cycle, less than twice the power of a comparable 4-stroke engine is attainable in practice.

In the USA two stroke motorcycle and automobile engines were banned due to the pollution, although many thousands of lawn maintenance engines are in use.citation needed

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Internal combustion engine

"ICEV" redirects here. For the form of water ice, see Ice V. For the high speed train, see ICE V.
Diagram of a cylinder as found in 4-stroke gasoline engines.:
C ? crankshaft.
E ? exhaust camshaft.
I ? inlet camshaft.
P ? piston.
R ? connecting rod.
S ? spark plug.
V ? valves. red: exhaust, blue: intake.
W ? cooling water jacket.
gray structure ? engine block.
Diagram describing the ideal combustion cycle by Carnot

An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine the expansion of the high-temperature and high-pressure gases produced by combustion apply direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy.

The first commercially successful internal combustion engine was created by Étienne Lenoir around 18591 and the first modern internal combustion engine was created in 1876 by Nikolaus Otto (see Otto engine).

The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described.12 Firearms are also a form of internal combustion engine.2

Internal combustion engines are quite different from external combustion engines, such as steam or Stirling engines, in which the energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids can be air, hot water, pressurized water or even liquid sodium, heated in a boiler. ICEs are usually powered by energy-dense fuels such as gasoline or diesel, liquids derived from fossil fuels. While there are many stationary applications, most ICEs are used in mobile applications and are the dominant power supply for vehicles such as cars, aircraft, and boats.

Typically an ICE is fed with fossil fuels like natural gas or petroleum products such as gasoline, diesel fuel or fuel oil. There's a growing usage of renewable fuels like biodiesel for compression ignition engines and bioethanol or methanol for spark ignition engines. Hydrogen is sometimes used, and can be made from either fossil fuels or renewable energy.

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine